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In a position-space renormalization group (PSRG) approach to percolation one 
calculates the probability R(p, b) that a finite lattice of linear size b percolates, 
where p is the occupation probability of a site or bond. A sequence of percola- 
tion thresholds p,(b) is then estimated from R(pc, b) = pc(b) and extrapolated 
to the limit b---, oo to obtain p,.=pc(oo). Recently, it was shown that for a 
certain spanning rule and boundary condition, R(pc, oo)= R c is universal, and 
since p,. is not universal, the validity of PSRG approaches was questioned. We 
suggest that the equation R(p,., b) = ~x, where <x is an)' number in (0, 1 ), provides 
a sequence of p,.(b)'s that always converges to Pc as b ---+ oo. Thus, there is an 
envelope from any point inside of which one can converge to Pc- However, the 
convergence is optimal if c< = Re- By calculating the fracta] dimension of the 
sample-spanning cluster at Pc, we show that the same is true about ap o, critical 
exponent of percolation that is calculated by a PSRG method. Thus PSRG 
methods are still a useful tool for investigating percolation properties of 
disordered systems. 
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1. I N T R O D U C T I O N  

P e r c o l a t i o n  t h e o r y  h a s  b e c o m e  a p o w e r f u l ,  m u c h - u s e d  t o o l  fo r  i n v e s t i g a t -  

i n g  v a r i o u s  p h e n o m e n a  in  d i s o r d e r e d  m e d i a .  (~ I t s  p o p u l a r i t y  s t e m s  f r o m  

its  r e l e v a n c e  to  a w i d e  v a r i e t y  o f  f ie lds  c2~ a n d  f r o m  t h e  fac t  t h a t  d e s p i t e  

t h e  s i m p l i c i t y  o f  i ts  u n d e r l y i n g  c o n c e p t s ,  it  l e a d s  t o  n o n t r i v i a l  c r i t i ca l  

p h e n o m e n a .  M o r e o v e r ,  m u c h  l ike  t h e  I s i n g  m o d e l  o f  s t a t i s t i c a l  m e c h a n i c s ,  

p e r c o l a t i o n  h a s  b e c o m e  a t e s t i n g  g r o u n d  fo r  v a r i o u s  c o m p u t a t i o n a l  
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approaches to critical phenomena. Despite extensive studies, few exact 
results have been obtained for the most interesting quantities in percolation 
theory, and in particular the percolation thresholds Pc and various critical 
exponents that characterize the nonanalytical behavior of percolation 
quantities near Pc. Thus, over the years many approaches have been 
developed for estimating such properties. For nearly two decades position- 
space renormalization group (PSRG) methods have been an accurate tool 
for calculating the percolation threshold and the critical exponents of 
percolation. However, a recent paper by Ziff ~3) casts doubts on the validity 
or usefulness of this approach. The purpose of this paper is to further study 
this issue and to suggest that PSRG methods are still a useful tool for 
studying percolation. We first describe briefly the PSRG approach and the 
results of Ziff O) and those of others ~4 6) relevant to this problem, and then 
present our own calculations and results. 

2. P O S I T I O N - S P A C E  R E N O R M A L I Z A T I O N  G R O U P  A P P R O A C H  

The essence of a PSRG approach 17 11) to percolation is as follows. 
Consider, for example, a square lattice in which each site is occupied with 
probability p and is empty with probability 1 - p. We partition the lattice 
into b x b cells, where b is the number of sites in each direction. We then 
replace each cell with a single site whose probability of being occupied is 
R(p, b), called the RG transformation, and in effect is the probability that 
a cell of linear size b percolates. To calculate R(p, b) one specifies a span- 
ning rule and finds all RG cell configurations, with some sites occupied and 
some empty, that percolate according to the spanning rule. The RG trans- 
formation is then the sum of the probabilities of all percolating configura- 
tions in the cell. Various spanning rules have been used in the past (for 
reviews see Payandeh, t9~ Stanley etal., c~~ and Familytl~)). Reynolds 
etalJ m proposed three basic spanning rules in two dimensions (2D), 
which are Ro, which considers a cell as occupied if a cluster of occupied 
sites spans the cell either horizontally or vertically, R~, according to which 
a cell is occupied if the cluster spans it in a fixed direction, and R2, which 
is the rule if the cluster spans the cell both horizontally and vertically. For 
example, for a 3 x 3 RG ceil rule, Ro yields ~12) 

R(p,b)=p9+9pSq+36pTqZ+82p6q3+93pSq4+44p4qS-F6p3q6 (1) 

where q = 1 - p ,  while rule RI gives t~2) 

R(p, b) = p9 q_ 9pSq + 36pTqZ + 67p6q3 --b 59pSq 4 -k- 22p4q 5 + 3p3q 6 (2) 
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and rule R2 results in tt21 

R(p, b) = p 9  q.. 9pSq + 36pTq2 + 52p6q3 + 25pSq4 (3) 

At Pc, the sample-spanning cluster is self-similar and fractal. Thus, Pc is an 
invariant of the transformation and may be estimated from 

R(pc, b) = pc(b) (4) 

where pc(b) is an approximate estimate of Pc that one obtains with a RG 
cell of linear size b. Thus, if one calculates R(p, b) for a sequence of b's, one 
obtains a sequence of pc(b)'s which can then be extrapolated to b- - )@ to 
obtain Pc. Finite-size scaling predicts that 

p c ( b ) - p c ~ b  -l/v (5) 

where v is the critical exponent that characterizes the divergence of the 
correlation length Cp as Pc is approached, ~p ~ (p - Pc)-". For site percola- 
tion on the square lattice, Pc = 0.59275, and for 2D percolation, v = 4/3. 

However, Ziff 13) recently showed that on the square lattice rule RI 
does not renormalize at Pc. Specifically, he showed that as b - ) ~ ,  
R(pc, b --+ oo ) = Rc approaches a constant value 

R ~  (6) 

Since BernasconP TM had already shown that for bond percolation on the 
square lattice R(p~, b)= 1/2 for any b, Eq. (6) implies that R~ is universal, 
in contradiction with Eq. (4), since Pc is not universal, and Eq. (4) is 
supposed to be valid for any b. Moreover, Ziff (3) showed that on the square 
lattice 

p c ( b ) -  p ~ b  -~ -  ~/" (7) 

which implies a faster convergence of pc(b) to Pc than indicated by Eq. (5). 
Ziff's results were generalized by Aharony and Hovi, c4) who also suggested 
that the critical exponent in Eq. (7) might be somewhat smaller than 
1 + 1/v = 7/4 in 2D. Stauffer et al. (5) showed that for site and bond percola- 
tion on the simple-cubic network, R~ ~ 0.42 is indeed universal, but that in 
3D, Eq. (5) is still valid. Gropengiesser and Stauffer (6) showed that the 
universality of R~ is somewhat weak, since it may depend on the boundary 
conditions used in the lattice. Ziff (3) stated that these results indicate that 
the application.of PSRG methods to percolation, at least with rule R), is 
problematic, casting doubt on their validity and usefulness for estimating Pc 
and other important properties. The purpose of this paper is to show that, 
although for rule R~, R~ is universal, PSRG methods can still be used for 
estimating Pc and other critical properties of percolation networks. 
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3. C A L C U L A T I O N S  A N D  D I S C U S S I O N  

We propose that i f  one solves 

R(p, . ,b)=ct (8) 

where = is an arbitrary number  in (0, t), then this equation results, with 
increasing b, in a sequence of p,.(b)'s which converges to p,.. There are, 
however, two important  points to remember. One is that al though c~ can be 
any number  in (0, 1 ), and the resulting sequence ofp,.(b)'s always converges 
to p,., the convergence is optimal if~ = Re, the universal value of R(pc, oo). 
For example, on the square lattice if we choose c~ = 1/2 for PSRG trans- 
formations obtained with rule R~, we obtain very fast convergence, 
as indicated by Eq. (7). The second important  point is that equations 
R(pc, b ) =  0 and R(pc, b ) =  1 do not, in general, provide any estimates of 
p,.(b), since the former equation corresponds to an empty lattice (the lattice 
animal limit), while the latter equation corresponds to a completely 
occupied lattice. Thus, if we set c~ = e and ~ = 1 - e ,  where E is a small but 
nonzero number, we obtain the lower and upper limits of  the sequence of 
p,.(b)'s, and therefore we have an envelope from any point inside of which 
one can start a path toward Pc- Of  course, we cannot take c~ to be negative 
or larger than 1, as R(p, b) is a probability. 

To prove these, we used the RG transformations for rules Ro, R~, and 
R2 on the square lattice, set e = 0 .01 ,  1/2, and 0.99 (i.e., e=0.01) ,  and 
solved the resulting equations to estimate pc(b). For  rule Ro the RG trans- 
formations were derived exactly by Reynolds et al. 1~21 for up to b = 5 cells, 
while for rules R~ and R2 they were derived for up to b = 4  cells. Ziff 13~ 
extended the Rj results to b = 7 ,  and we extend the R2 results to b = 5 .  
Note that Ziff (3) and others 14 6) discussed only the R~ rule, but here we also 
discuss the other two rules. 

Figure 1 shows the results for rule Ro. As can be seen, the results 
for c~ = 1/2 converge smoothly to Pc if they are plotted as pc(b) versus 
( b + 5 . 5 )  -1"75. The exponent 1.75 is nothing but 1 + l / v ,  as suggested by 
Ziff, ~3) our  Eq. (7). The constant 5.5 is necessary for taking into account  the 
effect of correction-to-scaling terms, since Eq. (7) is applicable to large values 
of b, and for small and moderate b one has to take into account  such correc- 
tion terms. Figure 1 shows that the results with c~=0.01 and 0.99 also 
converge to p,., al though the convergence is not similar to Eq. (7), and thus 
these three curves define the envelope discussed above. Thus if we take c~ to 
be any number  in (0, 1) and solve Eq. (8), we obtain a curve inside the 
envelope that with increasing b will pass through p,.. The fact that the results 
for c(= 1/2 fail on the straight line implies that the asymptotic value of R,. 
for rule Ro is either 1/2 or very close to it. Note  also that the results 
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Fig. 1. Dependence ofpc(b)  on b for rule R 0 on the square lattice. The curves are, from top 
to bottom, for c~ = 0.99, 1/2, and 0.01. 

for ~ = 0 . 9 9  almost are on a straight line, implying that for this value 
of ~ the convergence to p,. is close to what is suggested by Eq. (7), but 
perhaps with an exponent somewhat smaller than I + 1/v but larger than 
l/v, although our results are not accurate enough to distinguish between 
1 + 1 / v = 7 / 4  (in 2D)  and a somewhat smaller exponent. On the other 
hand, the results for c~=0.01 converge more slowly to p,.. Thus, the 
convergence of p,.(b)'s to p,. is optimal when ~ = R,.. 

Figure 2 shows that results for rule R I. The results for cz= 1/2 were 
also obtained by Zif f .  {3J Note,  however, that the straight line for c~ = 1/2 is 
obtained if pc is plotted versus (b + 1.4) - 1.75, somewhat different from Fig. 1. 
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Fig. 2. Same as in Fig. l ,  but for rule Ri.  
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Fig. 3. Same as in Fig. l, but  for rule R 2. 

004 

Since the constants 5.5 and 1.4 represent only the correction-to-scaling 
terms, these results confirm our assertion that for rule Ro the value of Rc 
is either 1/2 or very close to it. Note that the results for this case clearly 
indicate that the convergence to p,. for any c( other than 1/2 is slower than 
what is suggested by Eq. (7), confirming our assertion. Figure 3 shows the 
results for rule Rz. In this case the sequence ofp,.(b)'s for c( = 1/2 does not 
converge to p,.", 0.59275 as fast as those for rules Ro and Rt,  indicating 
that for this rule Rc is not 1/2. This can be attributed to the fact that the 
boundary conditions for R2 (which requires spanning in both directions) 
are not the same as those of R, (spanning in one f i x ed  direction), and 
Gropengiesser and Stauffer (6~ already showed that Rc may depend on the 
boundary conditions. 

To further confirm these results, we also calculated the fractal dimen- 
sion d i of the sample-spanning cluster at p,., using a method developed 
by Family and Reynolds. <~41 In this method, a weight or fugacity K is 
associated with every occupied site of the RG cell, and a weight q = 1 - p 
is assigned to every empty site. The fugacity of the renormalized site is K'. 
Thus, for example, Eq. (1) becomes 

K ' = K g + 9 K S q + 3 6 K V q 2 + 8 2 K 6 q 3 + 9 3 K S q 4 + 4 4 K 4 q S + 6 K 3 q  6 (9) 

A fixed point K,.(b) is then calculated from K'(K,., qc, b ) = K c ,  where 
q,(b) = 1 - pc(b) as calculated above. An estimate of df is given by 

In 2 
dr(b) = in b (10) 
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Dependence of the fractal dimension dj(b) on b for rule R o on the square lattice. 

where 2 = dK'/dK, evaluated at K~(b) and q,.(b). We used this method and 
the RG transformations for rules R o, Rt, and R2. Three sets of qc(b)'s were 
also used which correspond to those obtained above for ct = 0.01, 1/2, and 
0.99. The results for rule Ro are shown in Fig. 4 (with similar results for Rt 
and R2, which are not shown), where we plot ds(b) versus I/In(b) (which 
is the standard extrapolation method for the critical exponents). As can be 
seen, the results in all cases appear to converge to df = 91/48 --- 1.9 for 2D 
percolation. Thus, using the RG transformations, one can obtain an 
envelope for the critical exponents of percolation, from any point inside of 
which it is possible to converge to the critical exponents of the infinite 
system. 
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